

BENHA UNIVERSITY FACULTY OF ENGINEERING AT SHOUBRA

ECE-508 Senvor Networks

Lecture #4 Localization & positioning

Instructor: Dr. Ahmad El-Banna

anna

Ahmad

Figure 1 Structure of the book

كندالتندسةتشرا

Goals of this chapter

- Means for a node to determine its physical position (with respect to some coordinate system) or symbolic location
- Using the help of
 - Anchor nodes that know their position
 - Directly adjacent
 - Over multiple hops
- Using different means to determine distances/angles locally

BASIC APPROACHES

)anna

Localization & positioning

- Determine *physical position* or *logical location*
 - Coordinate system or symbolic reference
 - Absolute or relative coordinates
- Options
 - Centralized or distributed computation
 - Scale (indoors, outdoors, global, ...)
 - Sources of information
- Metrics
 - Accuracy (how close is an estimated position to the real position?)
 - Precision (for repeated position determinations, how often is a given accuracy achieved?)
 - Costs, energy consumption, ...

Main approaches (information sources)

- Proximity
 - The simplest technique is to exploit the finite range of wireless communication.
 - decide whether a node is in the proximity of an anchor.
- (Tri-/Multi-)*lateration* and angulation
 - Use distance or angle estimates, simple geometry to compute position estimates
- Scene analysis
 - Radio environment has characteristic "signatures"
 - Can be measured beforehand, stored, compared with current situation

Estimating distances – RSSI

- Received Signal Strength Indicator
 - Send out signal of known strength, use received signal strength and path loss coefficient to estimate distance

$$P_{\mathsf{recv}} = c \frac{P_{\mathsf{tx}}}{d^{\alpha}} \Leftrightarrow d = \sqrt[\alpha]{\frac{cP_{\mathsf{tx}}}{P_{\mathsf{recv}}}}$$

Problem: Highly error-prone process – Shown: PDF for a fixed & different RSSI

8

Estimating distances – other means

- Time of arrival (ToA)
 - Use time of transmission, propagation speed, time of arrival to compute distance
 - Problem: Exact time synchronization
- Time Difference of Arrival (TDoA)
 - Use two different signals with different propagation speeds
 - Example: ultrasound and radio signal
 - Propagation time of radio negligible compared to ultrasound
 - Compute difference between arrival times to compute distance
 - Problem: Calibration, expensive/energy-intensive hardware

Determining angles

- Directional antennas
 - On the node
 - Mechanically rotating or electrically "steerable"
 - On several access points
 - Rotating at different offsets
 - Time between beacons allows to compute angles

Some range-free, single-hop localization techniques

 Overlapping connectivity: Position is estimated in the center of area where circles from which signal is heard/not heard overlap

- Approximate point in triangle
 - Determine triangles of anchor nodes where node is inside, overlap them
 - Check whether inside a given triangle move node or simulate movement by asking neighbors
- RADAR & others.

Banna

}

Ahmad

 \bigcirc

, Spring 2015

Sensors N/w, Lec#4

Trilateration

Solution with three anchors and correct distance values

- Assuming distances to three points with known location are exactly given
- Solve system of equations (Pythagoras!)
 - (x_i,y_i) : coordinates of *anchor point* i, r_i distance to anchor i
 - (x_u, y_u) : unknown coordinates of node

$$(x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2$$
 for $i = 1, \dots, 3$

• Subtracting eq. 3 from 1 & 2:

$$(x_1 - x_u)^2 - (x_3 - x_u)^2 + (y_1 - y_u)^2 - (y_3 - y_u)^2 = r_1^2 - r_3^2$$

$$(x_2 - x_u)^2 - (x_2 - x_u)^2 + (y_2 - y_u)^2 - (y_2 - y_u)^2 = r_2^2 - r_3^2$$

• Rearranging terms gives a linear equation in $(x_u, y_u)!$

$$2(x_3 - x_1)x_u + 2(y_3 - y_1)y_u = (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2)$$

$$2(x_3 - x_2)x_u + 2(y_3 - y_2)y_u = (r_2^2 - r_3^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2)$$

14

Trilateration as matrix equation

• Rewriting as a matrix equation:

$$2\begin{bmatrix} x_3 - x_1 & y_3 - y_1 \\ x_3 - x_2 & y_3 - y_2 \end{bmatrix} \begin{bmatrix} x_u \\ y_u \end{bmatrix} = \begin{bmatrix} (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2) \\ (r_2^2 - r_3^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2) \end{bmatrix}$$

• Example:
$$(x_1, y_1) = (2, 1), (x_2, y_2) = (5, 4), (x_3, y_3) = (8, 2),$$

 $r_1 = 10^{0.5}, r_2 = 2, r_3 = 3$

$$2\begin{bmatrix} 6 & 1\\ 3 & -2 \end{bmatrix} \begin{bmatrix} x_u\\ y_u \end{bmatrix} = \begin{bmatrix} 64\\ 22 \end{bmatrix}$$

 $!(x_u,y_u) = (5,2)$

Trilateration with distance errors

- What if only distance estimation $r_i^2 = r_i + \varepsilon_i$ available?
- Use multiple anchors, overdetermined system of equations

$$2\begin{bmatrix} x_n - x_1 & y_n - y_1 \\ \vdots & \vdots \\ x_n - x_{n-1} & y_n - y_{n-1} \end{bmatrix} \begin{bmatrix} x_u \\ y_u \end{bmatrix} = \begin{bmatrix} (r_1^2 - r_n^2) - (x_1^2 - x_n^2) - (y_1^2 - y_n^2) \\ \vdots \\ (r_{n-1}^2 - r_n^2) - (x_{n-1}^2 - x_n^2) - (y_{n-1}^2 - y_n^2) \end{bmatrix}$$

• Use (x_u, y_u) that *minimize* mean square error, i.e, $||\mathbf{A}\mathbf{x} - \mathbf{b}||_2$

Minimize mean square error

• Look at square of the of Euclidean norm expression (note that $||\mathbf{v}||_2^2 = \mathbf{v}^T \mathbf{v}$ for all vectors v)

 $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\mathrm{T}}(\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{x}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} - 2\mathbf{x}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{b} + \mathbf{b}^{\mathrm{T}}\mathbf{b}$

• Look at derivative with respect to x, set it (gradient) equal to 0:

$$2\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\mathrm{T}}\mathbf{b} = 0 \Leftrightarrow \mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$

- Normal equation
- Has unique solution (if A has full rank), which gives desired minimal mean square error
- There are various methods to solve such an equation, for example, Cholesky or QR factorization
- Essentially similar for angulation as well

16

MULTIHOP SCHEMES

)anna Ahmad \bigcirc Spring 2015 Sensors N/w, Lec#4

Multihop range estimation

- How to estimate range to a node to which no direct radio communication exists?
 - No RSSI, TDoA, ...
 - But: Multihop communication is possible

 Idea 1: Count number of hops, assume length of one^Qhop is known (*DV-Hop*)

Х

- Start by counting hops between anchors,
- estimate the average length of a single hop by dividing sum of distances by sum of hop counts.
- Idea 2: If range estimates between neighbors exist, use them to improve total length of route estimation in previous method (*DV-Distance*)

18

19

Iterative multilateration

- Assume some nodes can hear at least three anchors (to perform triangulation), but not all
- Idea: let more and more nodes compute position estimates, spread position knowledge in the network
 - Problem: Errors accumulate

Probabilistic position description

- Similar idea to previous one, but accept problem that position of nodes is only probabilistically known
 - Represent this probability explicitly, use it to compute probabilities for further nodes

(a) Probability density function of a node positions after receiving a distance estimate from one anchor from two independent anchors

(b) Probability density functions of two distance measurements

(c) Probability density function of a node after intersecting two anchor's distance measurements

Conclusions

- Determining location or position is a vitally important function in WSN, but fraught with many errors and shortcomings
 - Range estimates often not sufficiently accurate
 - Many anchors are needed for acceptable results
 - Anchors might need external position sources (GPS)
 - Multilateration problematic (convergence, accuracy)

anna Ahmad LO Spring 201 Lec#4 Sensors N/w,

- For more details, refer to:
 - Chapter 9, H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks, Wiley 2005.
- The lecture is available online at:
 - http://bu.edu.eg/staff/ahmad.elbanna-courses/12189
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>